Multiphysics Computational Homogenization of Materials (RTA1)

(Ongoing Project)




EU FP7 People - Marie Curie Actions: CIG

Project Duration:



From classical composite materials to modern polymeric substances, a detailed understanding of the macroscopic response of multiscale materials requires a consideration of their microstructure and a modeling of the coupling between various physical phenomena at the microscopic level. The present project is a broad categorization of various ongoing research activities that are aimed at the development of robust homogenization-based multiscale analysis approaches for such problems. The underlying physics are predominantly associated with coupled solid, fluid and particle mechanics with applications ranging from the thermomechanics of soft heterogeneous materials to porous media flows.

This is a research thrust area (RTA1) of CMML. Please contact Prof. Temizer for current positions available.

Related Publications:

    Journal Papers

  • Nishi, S., Terada, K., Temizer, İ. (2019). "Isogeometric analysis for numerical plate testing of dry woven fabrics involving frictional contact at meso-scale", Computational Mechanics
    DOI: 10.1007/s00466-018-1666-6

  • Wu, T., Temizer, İ., Wriggers, P. (2014). "Multiscale Hydro-Thermo-Chemo-Mechanical Coupling: Application to Alkali-Silica Reaction", Computational Materials Science, v.84 p.381-395
    DOI: 10.1016/j.commatsci.2013.12.029

  • Wu, T., Temizer, İ., Wriggers, P. (2013). "Computational Thermal Homogenization of Concrete", Cement & Concrete Composites, v.35 p.59-70
    DOI: 10.1016/j.cemconcomp.2012.08.026

  • Temizer, İ., Wu, T., Wriggers, P. (2013). "On the Optimality of the Window Method in Computational Homogenization", International Journal of Engineering Science, v.64 p.66-73
    DOI: 10.1016/j.ijengsci.2012.12.007

  • Temizer, İ. (2012). "On the Asymptotic Expansion Treatment of Two-Scale Finite Thermoelasticity.", International Journal of Engineering Science, v.53 p.74-84
    DOI: 10.1016/j.ijengsci.2012.01.003

  • Ma, J., Temizer, İ., Wriggers, P. (2011). "Random homogenization analysis in linear elasticity based on analytical bounds and estimates", International Journal of Solids and Structures, v.48(2) p.280-291
    DOI: 10.1016/j.ijsolstr.2010.10.004

  • Temizer, İ., Wriggers, P. (2011). "Homogenization in Finite Thermoelasticity", Journal of the Mechanics and Physics of Solids, v.59 p.344–372
    DOI: 10.1016/j.jmps.2010.10.004

  • Temizer, İ., Wriggers, P. (2011). "An adaptive multiscale resolution strategy for the finite deformation analysis of microheterogeneous structures", Computer Methods in Applied Mechanics and Engineering, v.200 p.2639-2661
    DOI: 10.1016/j.cma.2010.06.013

  • Temizer, İ., Wriggers, P. (2010). "A micromechanically motivated higher-order continuum formulation of linear thermal conduction", Zeitschrift für Angewandte Mathematik und Mechanik, v.90(10-11) p.768 – 782
    DOI: 10.1002/zamm.201000009

  • Temizer, İ., Wriggers, P. (2008). "On the computation of the macroscopic tangent for multiscale volumetric homogenization problems", Computer Methods in Applied Mechanics and Engineering, v.198(3-4) p.495-510
    DOI: 10.1016/j.cma.2008.08.018

  • Temizer, İ., Wriggers, P. (2008). "On a mass conservation criterion in homogenization", Journal of Applied Mechanics, Transactions ASME, v.75 p.054503
    DOI: 10.1115/1.2913042

  • Temizer, İ., Zohdi, T.I. (2007). "A numerical method for homogenization in non-linear elasticity", Computational Mechanics, v.40(2) p.281-298
    DOI: 10.1007/s00466-006-0097-y

  • Temizer, İ., Wriggers, P. (2007). "An adaptive method for homogenization in orthotropic nonlinear elasticity", Computer Methods in Applied Mechanics and Engineering, v.196(35-36) p.3409-3423
    DOI: 10.1016/j.cma.2007.03.017

  • Temizer, İ., Zohdi, T.I. (2005). "Agglomeration and refragmentation in microscale granular flows", International Journal of Fracture, v.131(3) p.L37-L44
    DOI: 10.1007/s10704-005-2598-7

Comments are closed.