EVALUATION OF NUSSELT NUMBER FOR A FLOW IN A MICROTUBE WITH
CONSTANT HEAT FLUX INCLUDING AXIAL CONDUCTION, VISCOUS DISSIPATION
AND SECOND-ORDER SLIP MODEL

by

Barbaros CETINa*, Ozgur BAYERb

In this paper, the fully-developed temperature profile and corresponding
Nusselt value is determined analytically for a gaseous flow in a microtube
with a thermal boundary condition of constant wall heat flux. The flow
assumed to be laminar, and hydrodynamically and thermally fully developed.
The fluid is assumed to be constant property and incompressible. The effect
of rarefaction, viscous dissipation and axial conduction, which are important
at the microscale, are included in the analysis. Second-order model is used
for the slip-flow and temperature jump boundary conditions for the
implementation of the rarefaction effect. Closed form solutions for the
temperature field and the fully-developed Nusselt number is derived as a
function of Knudsen number, Brinkman number and Peclet number.

Key words: microtube, rarefaction, second-order slip model, viscous dissipation, axial conduction

1. Introduction

The recent developments in micro- and nano-fabrication techniques have enabled the usage
of fluidic and thermal systems with micrometer dimensions in many biomedical and engineering
applications such as micro-reactors, micro-heat exchangers, cell reactors etc.. Therefore, the
fundamental understanding of the transport phenomena at microscale is crucial to design, optimize and
utilize improved micron-sized systems. Analysis of heat transfer inside a microtube is one of the
fundamental problems to understand the fluid physics at microscale. There are several issues that need
to be considered at microscale.

The ratio of the mean free path to the characteristic length, a dimensionless quantity, is
known as Knudsen number ($Kn = \lambda/L$). As Knudsen number increases, fluid modeling is moving from
continuum models to molecular models, and non-continuum effects needs to be considered. The
regime where the Kn number is between 0.001 and 0.1 is known as slip-flow regime [1]. The flow of a
gas with a typical mean free path of approximately 100 nm at standard condition inside a
microchannel with a dimension of 10 micron would result in a gas flow in a slip-flow regime.
Although the equations of continuum mechanics (i.e. Navier-Stoke’s equations) are valid in this
regime the boundary conditions needs to be modified to take into account the non-continuum effects
(i.e. rarefaction effects).

The general form of the boundary conditions for velocity and temperature can be written as
follows:
\[u - u_w = a_1 \lambda \left(\frac{\partial u}{\partial n} \right)_{\text{wall}} + a_2 \lambda^2 \left(\frac{\partial^2 u}{\partial n^2} \right)_{\text{wall}} \] \tag{1}

\[T - T_w = b_1 \lambda \left(\frac{\partial T}{\partial n} \right)_{\text{wall}} + b_2 \lambda^2 \left(\frac{\partial^2 T}{\partial n^2} \right)_{\text{wall}} \] \tag{2}

First terms of the eqs. (1) and (2) are known as first-order boundary conditions, and the second terms are known as second-order boundary conditions. As the modeling moves to the edge of the slip flow regime (i.e. Kn approaches 0.1), the inclusion of the second-order terms improves the accuracy of the solution. The last term of the eq. (1) is known as thermal creep, and is also in the order of \(\lambda^2 \) \[1\]. However for the ease of the solution this term is neglected in this study.

There are two common models for second-order boundary conditions, which were suggested by Deissler \[2\] and Karniadakis and Beskok \[3\]. In this study these two models are implemented, and the corresponding coefficients for these two models are tabulated in tab. 1 \[1\].

<table>
<thead>
<tr>
<th>Table 1. List of the coefficients used in eqs. (1) and (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deissler</td>
</tr>
<tr>
<td>(a_1)</td>
</tr>
<tr>
<td>(a_2)</td>
</tr>
<tr>
<td>(b_1)</td>
</tr>
<tr>
<td>(b_2)</td>
</tr>
<tr>
<td>Karniadakis and Beskok</td>
</tr>
<tr>
<td>(a_1)</td>
</tr>
<tr>
<td>(a_2)</td>
</tr>
<tr>
<td>(b_1)</td>
</tr>
<tr>
<td>(b_2)</td>
</tr>
</tbody>
</table>

The effect of the viscous dissipation, which is characterized by Brinkman number, and the axial conduction, which is characterized by Peclet number, are also important at microscale \[4\]. The fluid flow \[5, 6\] and heat transfer \[4, 7-17\] inside a micro-conduit was analyzed for different geometries such as circular tube \[4, 7, 9, 11, 14-16\], parallel plate \[10, 12, 14\], rectangular channel \[17\], annular channel \[13\] using first-order \[4, 7, 10-15\] and second-order models \[16-17\] both analytically \[7, 10-14, 16\] and numerically \[9, 17\]. Some studies included the viscous dissipation \[4, 9, 10-12, 14, 15, 17\] and the axial conduction \[10, 14, 15, 17\].

In this study, heat transfer for a fluid flow in a microtube with a constant wall heat flux is analyzed including viscous dissipation, axial conduction and rarefaction effects. Second-order models are implemented for the rarefaction effects. Closed form solutions are obtained for fully-developed temperature profile and the Nusselt number.

2. Analysis

The steady-state, hydrodynamically-developed flow with a constant temperature, \(T_s \), flows into the microtube with the constant heat flux at the wall. Introducing the following dimensionless parameters,

\[\eta = \frac{r}{R}, \xi = \frac{x}{Pe \cdot R}, \theta = \frac{T - T_s}{T_e}, \tilde{u} = \frac{u}{u_m}, Pe = Re \cdot Pr, Br = \frac{\mu u_m}{q W R}, \] \tag{3}
the governing energy equation, including the axial conduction and the viscous dissipation term, and
the corresponding boundary conditions can be written as,

\[\frac{\bar{u} \partial \theta}{2 \frac{\partial \xi}{\partial \eta}} = \frac{1}{\eta} \frac{\partial}{\partial \eta} \left(\frac{\theta}{\eta} \right) + \frac{1}{Pe^2} \frac{\partial^2 \theta}{\partial \eta^2} + 2Br \left(\frac{\partial \theta}{\partial \eta} \right)^2, \] (4)

where \(\bar{u} \) is the dimensionless fully-developed velocity profile for the slip-flow regime. By solving the
momentum equation together with the slip-velocity boundary condition, \(\bar{u} \) can be determined as,

\[\bar{u} = \frac{u}{u_m} = \frac{1 - 2\eta^2}{1 + 8a_1Kn + 16a_2Kn^2} + 1. \] (6)

The fully-developed temperature profile has the following functional form [18]

\[\theta_\infty = A \xi + \phi(\eta), \] (7)

where \(A \) is constant that needs to determined. Substituting eq. (7) into eq. (4), and integrating once in \(\eta \)-direction results in

\[\frac{d\phi}{d\eta} = \frac{1}{\eta} \int \left(\frac{\bar{u}A}{2} - \frac{32Br}{\left(1 + 8a_1Kn + 16a_2Kn^2\right)^2} \right) \eta^2 d\eta, \] (8)

Using the boundary condition at the wall, \(A \) can be determined as,

\[A = 32Br\chi + 4, \quad \chi = \frac{1}{1 + 8a_1Kn + 16a_2Kn^2}. \] (9)

Integrating eq. (8) in \(\eta \)-direction, \(\phi \) can be determined as,

\[\phi(\eta) = \frac{A}{8} (\chi + 1)\eta^2 - \left(\frac{A}{16} + 2Br\chi \right) \chi \eta^3 + Bln\eta + C, \] (10)

where \(B \) and \(C \) are arbitrary constants. Using the boundary condition at the microtube center, constant
\(B \) can be determined as zero. In order to get constant \(C \), eq. (4) needs to integrated in \(\eta \)-direction from
0 to 1, and in \(\xi \)-direction. These integration results in the following equation,

\[\frac{1}{2} \int_0^1 \bar{u}(\eta, \xi) d\eta = \bar{\xi} + \frac{1}{Pe^2} \int_0^1 \left(\int_0^1 \theta(\eta, \xi) d\eta \right) + \int_0^1 \frac{32Br}{1 + 8a_1Kn + 16a_2Kn^2} \eta^3 d\eta \frac{d\xi}{\xi}. \] (11)
constant C can be determined by substituting eq. (7) into eq. (11),

$$C = Br\chi\left(\frac{\chi^2}{3} - \chi + \frac{64}{Pe^2} + \frac{4}{3}\right) + \frac{1}{4}\left(1 - \frac{\chi}{3} + \frac{\chi^2}{6}\right) + \frac{8}{Pe^2}.$$ \hspace{1cm} (12)

Fully-developed temperature can be obtained by substituting eq. (10) into eq. (7) as,

$$\theta_\infty(\xi, \eta) = \frac{A}{8}(\chi + 1)\eta^2 - \left(\frac{A}{16} + 2Br\chi\right)\chi\eta^4 + C,$$ \hspace{1cm} (13)

where A and C are given in eqs. (9) and (12). When $Kn = Br = 0$, the solution recovers the macrochannel result [19] as,

$$\theta_\infty = 4\xi + \eta^2 - \frac{7\eta^4}{24} + \frac{8}{Pe^2}.$$ \hspace{1cm} (14)

Introducing dimensionless quantities, fully-developed Nusselt number can be written as,

$$Nu_\infty = \frac{h_\infty D}{k} = -\frac{2}{\theta_\text{m} - \theta_w},$$ \hspace{1cm} (15)

where θ_mean is the dimensionless mean temperature which is defined as,

$$\theta_\text{m} = 2\int_0^1 \theta(\eta, \xi)\eta d\eta,$$ \hspace{1cm} (16)

and θ_w is the wall temperature and can be determined by the implementation of the temperature-jump boundary condition, eq. (2) as,

$$\theta_w = \theta_\infty(\xi, 0) + 2b_1Kn\left(\frac{\partial^2 \theta}{\partial \eta^2}\right)_{\eta=1} - 4b_2Kn^2\left(\frac{\partial^2 \theta}{\partial \eta^2}\right)_{\eta=1}.$$ \hspace{1cm} (17)

Substituting eqs. (13), (17) into eq. (15), Nu_∞ can be determined as,

$$Nu_\infty = \frac{1}{Br\chi\left(\frac{\chi^2}{3} - \chi + \frac{64}{Pe^2} + \frac{4}{3}\right) + \frac{1}{4}\left(1 - \frac{\chi}{3} + \frac{\chi^2}{6}\right) + \frac{8}{Pe^2} + 4b_1Kn - 4b_2Kn^2(8Br\chi(1 - 5\chi) - 2\chi + 1)}.$$ \hspace{1cm} (18)

For a macrochannel flow (i.e. $Kn = Br = 0, \chi = 1$), the solution recovers well-known result of 48/11 [18, pp. 389-390].

3. Results and Discussion
The fully-developed temperature profile and the fully-developed Nu is determined by solving the energy equation with the appropriate boundary conditions. Second-order boundary conditions are implemented to include the rarefaction effects. The viscous dissipation and the axial conduction are also included in the analysis. Coefficient b_1 is taken as 1.667 and γ is taken as 1.4 in the calculation of coefficient b_2, which are typical values for air, which is the working fluid in many engineering problems. As seen from eq. (13) fully developed temperature profile is function of Kn, Br, Pe and ξ, however, the fully developed Nu is function of only Kn and Br, and does not depend on Pe which means Pe number only effects the local Nu in the thermal entrance region.

Table 2. Fully-developed Nu for different Kn and Br number values

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>4.36</td>
<td>4.36</td>
<td>4.36</td>
<td>3.04</td>
<td>3.04</td>
<td>7.74</td>
<td>7.74</td>
</tr>
<tr>
<td>0.02</td>
<td>4.07</td>
<td>4.09</td>
<td>4.07</td>
<td>3.27</td>
<td>3.20</td>
<td>5.47</td>
<td>5.59</td>
</tr>
<tr>
<td>0.04</td>
<td>3.75</td>
<td>3.80</td>
<td>3.74</td>
<td>3.38</td>
<td>3.16</td>
<td>4.32</td>
<td>4.59</td>
</tr>
<tr>
<td>0.06</td>
<td>3.44</td>
<td>3.50</td>
<td>3.43</td>
<td>3.42</td>
<td>3.02</td>
<td>3.60</td>
<td>3.97</td>
</tr>
<tr>
<td>0.08</td>
<td>3.16</td>
<td>3.23</td>
<td>3.16</td>
<td>3.39</td>
<td>2.85</td>
<td>3.08</td>
<td>3.53</td>
</tr>
<tr>
<td>0.10</td>
<td>2.90</td>
<td>2.97</td>
<td>2.92</td>
<td>3.31</td>
<td>2.68</td>
<td>2.69</td>
<td>3.20</td>
</tr>
<tr>
<td>0.12</td>
<td>2.68</td>
<td>2.73</td>
<td>2.71</td>
<td>3.22</td>
<td>2.52</td>
<td>2.37</td>
<td>2.92</td>
</tr>
</tbody>
</table>

The fully-developed values for different Kn and Br numbers are tabulated in tab. 2. The fully-developed Nu for different Kn and Br numbers is also shown in fig 1. The results for first-order model are also included in the fig. 1. As seen from the figure, the second-order model proposed by Karniadakis and Beskok [3] gives close results to first-order model. However, the second-order model proposed by Deissler [2] gives appreciably deviation from first-order model. For both models deviation from first-order model increases as the rarefaction increases (i.e. increasing Kn).
Fig 1. Variation of fully developed Nu with Kn for different Br

Br number has an appreciable effect on Nu value. Positive Br means that the fluid is being heated and negative Br means that the fluid is being cooled. For Br<0, second-order model of [2] underestimate the Nu than that of first-order model, and second-order model of [3] overestimate the Nu than that of first-order model. For Br>0, the situation is vice-versa.

In this study only the fully-developed region is considered. Since the length-over-diameter ratio is high for microchannels, in the majority of the channel the flow will be fully-developed. However, in order to see the complete picture, thermally developing region can be analyzed. In that analysis, the superposition method can be utilized and the fully-developed temperature profile can be subtracted from the overall solution and the remaining homogenous equation can be solved by using eigen-function expansion [14]. In the analysis, thermal creep term in the slip-flow boundary condition, eq. (1) is neglected. Inclusion of the thermal creep term in the analysis will be the future research direction.
Nomenclature

- **Br**: Brinkman number \((= \mu u_m^2/q_w R) \), [-]
- **D**: tube diameter [m]
- **F**: accommodation factor
- **h**: convective heat transfer coefficient [W m\(^{-2}\) K\(^{-1}\)]
- **k**: thermal conductivity [W m\(^{-1}\) K\(^{-1}\)]
- **Kn**: Knudsen number \((= \frac{\lambda}{L}) \), [-]
- **L**: characteristic length [m]
- **Nu**: Nusselt number \((= h_\infty D/k) \), [-]
- **Pe**: Peclet number \((= Re \cdot Pr) \), [-]
- **Pr**: Prandtl number \((= \frac{\nu}{\alpha}) \), [-]
- **q**: heat flux [W m\(^{-2}\)]
- **r**: radial coordinate [m]
- **R**: tube radius [m]
- **Re**: Reynolds number \((= u_m D/\nu) \), [-]
- **T**: fluid temperature [K]
- **u**: velocity in axial direction [m s\(^{-1}\)]
- **\(\bar{u} \)**: dimensionless velocity
- **x**: axial coordinate [m]

Greek symbols

- \(\alpha \): thermal diffusivity [m\(^2\) s\(^{-1}\)]
- \(\chi \): parameter defined in eq. (9)
- \(\phi \): dimensionless temperature
- \(\gamma \): specific heat ratio
- \(\eta \): dimensionless radial coordinate
- \(\lambda \): mean free path [m]
- \(\mu \): dynamic viscosity [kg m\(^{-1}\) s\(^{-1}\)]
- \(\nu \): kinematic viscosity [m\(^2\) s\(^{-1}\)]
- \(\theta \): dimensionless temperature
- \(\xi \): dimensionless axial coordinate

Subscripts

- \(i \): inlet
- \(m \): mean
- \(T \): thermal
- \(w \): wall
- \(\infty \): fully-developed

References

Affiliations

* Mechanical Engineering, Middle East Technical University-Northern Cyprus Campus, Guzelyurt, TRNC Mersin 10, Turkey

b Dept. Mechanical Engineering, University of Kentucky, Lexington 40506 KY, USA

* Middle East Technical University-Northern Cyprus Campus Guzelyurt, TRNC Mersin 10, Turkey, E-mail: barbaros@metu.edu.tr, barbaroscetin@gmail.com