COMPUTATIONAL MULTISCALE MECHANICS LABORATORY (CMML)

ACTIVITIES:

Our research interests lie within the general theoretical and numerical framework of computational mechanics with a special focus on the investigation of problems involving strongly coupled physical phenomena that naturally occur over multiple length and time scales. The ability to convey information across scales is, without doubt, essential for a better understanding of the sources of physical behavior observed on higher scales and helps circumvent the often difficult task of constructing sufficiently accurate phenomenological models to describe these observations. To improve the accuracy and broaden the applicability of robust information transfer schemes, we have been focusing our work along two major research paths, namely the investigation of volumetric and contact homogenization techniques in a fully nonlinear setting for problems involving hierarchical bulk and interface topologies.

Some of the research we have been conducting involves the finite thermoelasticity analysis of heterogeneous media, model reduction through database approaches, simulation of granular interfaces by coupling the Discrete Element Method (DEM) with the Finite Element Method (FEM) as well as the finite thermomechanical and elastohydrodynamic analysis of microrough contact interfaces. Additionally, we develop robust computational contact mechanics algorithms within the isogeometric analysis framework. Links to some of our current projects are provided above.

A central theme in our research activities is the pursuit and development of novel coupling strategies for challenging multiphysics problems. This necessitates a well-balanced combination of theory and computation. Due to the non-standard coupling problems that arise, we have been developing our own simulation packages which are centralized around FEM and DEM.

 

POSITIONS:

We continuously seek highly motivated MS/PhD students and post-doctoral fellows with proven outstanding academic potential. If you are interested in joining CMML, please contact Prof. Temizer for current positions available.

Students from diverse educational backgrounds such as Civil Engineering or Physics are also encouraged to apply. We always welcome qualified undergraduate students who wish to participate in our ongoing research activities.

Computational Multiscale Mechanics Laboratory (CMML)

RELATED PUBLICATIONS

  • akal, B.A., Temizer, ., Terada, K., Kato, J. (2019). "Microscopic Design and Optimization of Hydrodynamically Lubricated Dissipative Interfaces", International Journal for Numerical Methods in Engineering, v.120 p.153-178, DOI: http://dx.doi.org/10.1002/nme.6129
  • Nishi, S., Terada, K., Temizer, . (2019). "Isogeometric analysis for numerical plate testing of dry woven fabrics involving frictional contact at meso-scale", Computational Mechanics, v.64 p.211-229, DOI: http://dx.doi.org/10.1007/s00466-018-1666-6
  • Waseem, A., Guilleminot, J., Temizer, . (2017). "Stochastic Multiscale Analysis in Hydrodynamic Lubrication", International Journal for Numerical Methods in Engineering, v.112 p.1070-1093, DOI: http://dx.doi.org/10.1002/nme.5546
  • Waseem, A., Temizer, ., Kato, J., Terada, K. (2017). "Micro-Texture Design and Optimization in Hydrodynamic Lubrication via Two-Scale Analysis", Structural and Multidisciplinary Optimization, v.56 p.227-248, DOI: http://dx.doi.org/10.1007/s00158-017-1713-5
  • Yldran, .N., Temizer, ., etin, B. (2017). "Homogenization in Hydrodynamic Lubrication: Microscopic Regimes and Re-Entrant Textures", Journal of Tribology, v.140 p.011701(1-19), Full Text, DOI: http://tribology.asmedigitalcollection.asme.org/article.aspx?articleid=2628741
  • Kl, K.., Temizer, . (2016). "Tuning Macroscopic Sliding Friction at Soft Contact Interfaces: Interaction of Bulk and Surface Heterogeneities", Tribology International, v.104 p.83-97, DOI: http://dx.doi.org/10.1016/j.triboint.2016.08.024
  • Waseem, A., Temizer, ., Kato, J., Terada, K. (2016). "Homogenization-Based Design of Surface Textures in Hydrodynamic Lubrication", International Journal for Numerical Methods in Engineering, v.108 p.1427-1450, DOI: http://dx.doi.org/10.1002/nme.5256
  • Temizer, ., Stupkiewicz, S. (2016). "Formulation of the Reynolds Equation on a Time-Dependent Lubrication Surface", Proceedings of the Royal Society A, v.472 p.20160032, DOI: http://dx.doi.org/10.1098/rspa.2016.0032
  • Temizer, . (2016). "Sliding Friction Across the Scales: Thermomechanical Interactions and Dissipation Partitioning", Journal of the Mechanics and Physics of Solids, v.89 p.126-148, DOI: http://dx.doi.org/10.1016/j.jmps.2016.01.012
  • Hesch, C., Franke, M., Dittmann, M., Temizer, . (2016). "Hierarchical NURBS and a higher-order phase-field approach to fracture for finite-deformation contact problems", Computer Methods in Applied Mechanics and Engineering, v.301 p.242-258, DOI: http://dx.doi.org/10.1016/j.cma.2015.12.011
  • Temizer, ., Hesch, C. (2016). "Hierarchical NURBS in Frictionless Contact", Computer Methods in Applied Mechanics and Engineering, v.299 p.161-186, DOI: http://dx.doi.org/10.1016/j.cma.2015.11.006
  • Kabacaolu, G., Temizer, . (2015). "Homogenization of Soft Interfaces in Time-Dependent Hydrodynamic Lubrication", Computational Mechanics, v.56 p.421-441, DOI: http://dx.doi.org/10.1007/s00466-015-1179-5
  • Temizer, . (2014). "Computational Homogenization of Soft Matter Friction: Isogeometric Framework and Elastic Boundary Layers", International Journal for Numerical Methods in Engineering, v.100 p.953-981, DOI: http://dx.doi.org/10.1002/nme.4778
  • Temizer, ., Abdalla, M., Grdal, Z. (2014). "An Interior Point Method for Isogeometric Contact", Computer Methods in Applied Mechanics and Engineering, v.276 p.589-611, DOI: http://dx.doi.org/10.1016/j.cma.2014.03.018
  • Dittmann, M., Franke, M., Temizer, ., Hesch, C. (2014). "Isogeometric analysis and thermomechanical mortar contact problems", Computer Methods in Applied Mechanics and Engineering, v.274 p.192-212, DOI: http://dx.doi.org/10.1016/j.cma.2014.02.012
  • Wu, T., Temizer, ., Wriggers, P. (2014). "Multiscale Hydro-Thermo-Chemo-Mechanical Coupling: Application to Alkali-Silica Reaction", Computational Materials Science, v.84 p.381-395, DOI: http://dx.doi.org/10.1016/j.commatsci.2013.12.029
  • Temizer, . (2014). "Multiscale Thermomechanical Contact: Computational Homogenization with Isogeometric Analysis", International Journal for Numerical Methods in Engineering, v.97 p.582-607, DOI: http://dx.doi.org/10.1002/nme.4604
  • Temizer, . (2013). "Granular Contact Interfaces with Non-Circular Particles", Tribology International, v.67 p.229239, DOI: http://dx.doi.org/10.1016/j.triboint.2013.08.005
  • Temizer, ., Wu, T., Wriggers, P. (2013). "On the Optimality of the Window Method in Computational Homogenization", International Journal of Engineering Science, v.64 p.66-73, DOI: http://dx.doi.org/10.1016/j.ijengsci.2012.12.007
  • Temizer, . (2013). "A Mixed Formulation of Mortar-Based Contact with Friction", Computer Methods in Applied Mechanics and Engineering, v.255 p.183-195, DOI: http://dx.doi.org/10.1016/j.cma.2012.12.002
  • Wu, T., Temizer, ., Wriggers, P. (2013). "Computational Thermal Homogenization of Concrete", Cement & Concrete Composites, v.35 p.59-70, DOI: http://dx.doi.org/10.1016/j.cemconcomp.2012.08.026
  • Temizer, . (2012). "A Mixed Formulation of Mortar-Based Frictionless Contact", Computer Methods in Applied Mechanics and Engineering, v.223-224 p.173-185, DOI: http://dx.doi.org/10.1016/j.cma.2012.02.017
  • Budt, M., Temizer, ., Wriggers, P. (2012). "A Computational Homogenization Framework for Soft Elastohydrodynamic Lubrication", Computational Mechanics, v.49 p.749-767, DOI: http://dx.doi.org/10.1007/s00466-012-0709-7
  • Temizer, . (2012). "On the Asymptotic Expansion Treatment of Two-Scale Finite Thermoelasticity.", International Journal of Engineering Science, v.53 p.74-84, DOI: http://dx.doi.org/10.1016/j.ijengsci.2012.01.003
  • Temizer, ., Wriggers, P., Hughes, T. (2012). "Three-Dimensional Mortar-Based Frictional Contact Treatment in Isogeometric Analysis with NURBS", Computer Methods in Applied Mechanics and Engineering, v.209-212 p.115-128, DOI: http://dx.doi.org/10.1016/j.cma.2011.10.014
  • De Lorenzis, L., Temizer, ., Wriggers, P., Zavarise, G. (2011). "A large deformation frictional contact formulation using NURBS-based isogeometric analysis", International Journal for Numerical Methods in Engineering, v.87 p.1278-1300, DOI: http://dx.doi.org/10.1002/nme.3159
  • Temizer, ., Wriggers, P., Hughes, T. (2011). "Contact Treatment in Isogeometric Analysis with NURBS", Computer Methods in Applied Mechanics and Engineering, v.200 p.1100-1112, DOI: http://dx.doi.org/10.1016/j.cma.2010.11.020
  • Temizer, ., Wriggers, P. (2011). "An adaptive multiscale resolution strategy for the finite deformation analysis of microheterogeneous structures", Computer Methods in Applied Mechanics and Engineering, v.200 p.2639-2661, DOI: http://dx.doi.org/10.1016/j.cma.2010.06.013
  • Temizer, ., Wriggers, P. (2011). "Homogenization in Finite Thermoelasticity", Journal of the Mechanics and Physics of Solids, v.59 p.344372, DOI: http://dx.doi.org/10.1016/j.jmps.2010.10.004
  • Temizer, . (2011). "Thermomechanical Contact Homogenization with Random Rough Surfaces and Microscopic Contact Resistance", Tribology International, v.44 p.114-124, DOI: http://dx.doi.org/10.1016/j.triboint.2010.09.011
  • Ma, J., Temizer, ., Wriggers, P. (2011). "Random homogenization analysis in linear elasticity based on analytical bounds and estimates", International Journal of Solids and Structures, v.48(2) p.280-291, DOI: http://dx.doi.org/10.1016/j.ijsolstr.2010.10.004
  • Temizer, ., Wriggers, P. (2010). "A micromechanically motivated higher-order continuum formulation of linear thermal conduction", Zeitschrift fr Angewandte Mathematik und Mechanik, v.90(10-11) p.768-782, DOI: http://dx.doi.org/10.1002/zamm.201000009
  • Temizer, ., Wriggers, P. (2010). "Thermal contact conductance characterization via computational contact homogenization: A finite deformation theory framework", International Journal for Numerical Methods in Engineering, v.83(1) p.24-58, DOI: http://dx.doi.org/10.1002/nme.2822
  • Temizer, ., Wriggers, P. (2010). "Inelastic analysis of granular interfaces via computational contact homogenization", International Journal for Numerical Methods in Engineering, v.84(8) p.883-915, DOI: http://dx.doi.org/10.1002/nme.2921
  • Temizer, ., Wriggers, P. (2008). "On a mass conservation criterion in homogenization", Journal of Applied Mechanics, Transactions ASME, v.75 p.054503, DOI: http://dx.doi.org/10.1115/1.2913042
  • Temizer, ., Wriggers, P. (2008). "A multiscale contact homogenization technique for the modeling of third bodies in the contact interface", Computer Methods in Applied Mechanics and Engineering, v.198(3-4) p.377-396, DOI: http://dx.doi.org/10.1016/j.cma.2008.08.008
  • Temizer, ., Wriggers, P. (2008). "On the computation of the macroscopic tangent for multiscale volumetric homogenization problems", Computer Methods in Applied Mechanics and Engineering, v.198(3-4) p.495-510, DOI: http://dx.doi.org/10.1016/j.cma.2008.08.018
  • Temizer, ., Zohdi, T.I. (2007). "A numerical method for homogenization in non-linear elasticity", Computational Mechanics, v.40(2) p.281-298, DOI: http://dx.doi.org/10.1007/s00466-006-0097-y
  • Temizer, ., Wriggers, P. (2007). "An adaptive method for homogenization in orthotropic nonlinear elasticity", Computer Methods in Applied Mechanics and Engineering, v.196(35-36) p.3409-3423, DOI: http://dx.doi.org/10.1016/j.cma.2007.03.017
  • Temizer, ., Zohdi, T.I. (2005). "Agglomeration and refragmentation in microscale granular flows", International Journal of Fracture, v.131(3) p.L37-L44, DOI: http://dx.doi.org/10.1007/s10704-005-2598-7